Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In models with large extra dimensions, “miniature” black holes (BHs) might be produced in high-energy proton–proton collisions at the Large Hadron Collider (LHC). In the semi-classical regime, those BHs thermally decay, giving rise to large-multiplicity final states with jets and leptons. On the other hand, similar final states are also expected in the production of electroweak sphaleron/instanton-induced processes. We investigate whether one can discriminate these scenarios when BH or sphaleron-like events are observed in the LHC using machine learning (ML) methods. Classification among several BH scenarios with different numbers of extra dimensions and the minimal BH masses is also examined. In this study we consider three ML models: XGBoost algorithms with (1) high- and (2) low-level inputs, and (3) a Residual Convolutional Neural Network. In the latter case, the low-level detector information is converted into an input format of three-layer binned event images, where the value of each bin corresponds to the energy deposited in various detector subsystems. We demonstrate that only a small number of detected events are sufficient to effectively discriminate between the sphaleron and BH processes. Separation between BH scenarios with different minimal masses is possible with an order of 10 events passing the preselection. A sufficient number of events could be observed in combined Run-2 and -3 data, if the production cross section is not much smaller than the present limit$$\sim 0.1$$ fb. We find, however, that a large number of events is needed to discriminate between BH hypotheses with the same minimal BH mass, but different numbers of extra dimensions.more » « less
- 
            Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.more » « less
- 
            Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
